A STOCHASTIC FRAMEWORK IMPLEMENTATION TO FORECAST STAGES IN THE EVERGLADES FOR OPERATIONAL PLANNING

UF Water Institute Symposium February 20-21, 2024

Yogesh P. Khare, Alaa Ali, Walter Wilcox, and Jason Godin Systems Modeling Unit SFWMD

Presentation Outline

Motivation

Overview

Methodology

Implementation

February 2024 Results

Discussion

Summary

Motivation

- Stage forecasts over seasonal to annual timeframes are important for operational planning in South Florida
- Rainfall is the most important driver of water levels and other conditions in the Everglades
- Rainfall outlooks are uncertain over medium- and long-range
 - information is available in the form of tercile probabilities at 3 monthly seasonal scale
- Drawbacks of currently implemented techniques for stage forecasting
 - historical rainfall instead of rainfall outlook
 - not constrained by operational protocols

International Research Institute (IRI)

Overview

- Conditional Position Analysis (CPA) is a stochastic framework that transforms stages obtained from Dynamic Position Analysis (DPA) based on rainfall outlook over the next twelve months (Ali, 2016).
- DPA uses SFWMM (a process-based model) which simulates stages and flows based on System's Operational Protocols (e.g., LORS2008).
- DPA stage outputs are used as inputs to CPA.

Methodology

(Ali, 2016)

- "rainfall is correlated more with the stage changes than the stage" (Ali 2009)
- Transition Probability Matrix (TPM) is calculated based on DPA stage data and historic rainfall used in DPA
- Monte Carlo Simulation generate 3 month overlapping Δ3mStage using TPM and rainfall outlook
- Nonlinear Integer Programming to sample individual monthly ΔmStage from DPA stage data
- > Objective function: $\sum_{i=1}^{10} (\sum_{j=i}^{i+2} \Delta mStage_j \Delta 3mStage_i)^2$
- ➤ Add daily △Stage for selected months to DPA initial stage recursively to create a realization of CPA stage
- Repeat above process

CPA Implementation

Everforecast Gages for CPA

> MATLAB based

- Originally developed for Lake Okeechobee
- Expanded to 199 locations in the Everglades (consistent with EverForecast), WCA1_Avg (avg of Site 7, Site 8T, and Site 9) and WCA3A_Avg (avg of Site 63, Site 64, and Site 65)
- 3 rainfall outlooks (climatological, CPC, and Preferred Scenario)
- 2 Operational Protocols LORS2008 and LOSOM

CPA Implementation: Rainfall Scenarios

Climatological

- assumes equal chances of below-normal/dry, normal, and above-normal/wet rainfall conditions over next twelve 3 monthly seasons
- connecting link between DPA and all other scenarios simulated under CPA

>CPC

- rainfall forecasts published by NOAA's Climate Prediction Center (CPC) every month (<u>Climate</u> <u>Prediction Center - Forecasts & Outlook Maps, Graphs and tables (noaa.gov)</u>).
- It is also used by JEM's EverForecast tool for stage prediction

Preferred Scenario (PrefSce)

- tercile probabilities are calculated from projected Niño-3.4 Index (<u>Climate Prediction Center El Nino</u> <u>Southern Oscillation (noaa.gov)</u> published by CPC
- typically, more aggressive in terms of shifts from Climatological probabilities

February 2024 CPA: Rainfall Scenarios

CPA Results

- Raw stage traces obtained from CPA are processed further (bootstrapped) to calculate percentile lines.
- CPA forecasted stage percentiles from 'Climatological' scenario are first collapsed on DPA stage percentiles. Corresponding adjustments are then applied to stage percentile lines for all other rainfall outlook scenarios.

Feb 2024 CPA: LOK under LORS2008

CPC

PrefSce

Feb 2024 CPA: LOK under LOSOM

CPC

PrefSce

12

Discussion and Summary

➢<u>Discussion</u>

- CPA may generate raw stage traces that do not appear realistic w.r.t. practical considerations
- Currently, efforts are underway to develop mechanism to further constrain CPA generated stages such that even extreme stages would conform to practically possible stages under current operational protocols

►Summary

- CPA methodology transforms DPA forecasted stages based on rainfall outlook, providing a more realistic perspective to water managers on the state of the system
- Monte Carlo Simulation technique with non-linear integer programming to generate stage traces
- Incorporates currently implemented and soon to be implemented operational protocols
- Flexible to simulate any hypothetical rainfall outlook

THANK YOU!

